28 research outputs found

    An unsupervised group average cortical parcellation using HARDI data

    Get PDF

    Evaluation of diffusion MRI based feature sets for the classification of primary motor and somatosensory cortical areas

    Get PDF
    In the following work several diffusion based feature vectors (DTI, NODDI, spherical harmonic (SH) invariants and fourth order tensor invariants (T4)) are compared in order to validate their usability in grey matter investigations. It was found that using multi-shell data and non-biophysical models such as SH and T4 achieves the highest classification accuracy between the primary motor and somatosensory cortical areas, and thus is likely to characterise grey matter tissues domains more effectively

    Using diffusion MRI to discriminate areas of cortical grey matter

    Get PDF
    Cortical area parcellation is a challenging problem that is often approached by combining structural imaging (e.g., quantitative T1, diffusion-based connectivity) with functional imaging (e.g., task activations, topological mapping, resting state correlations). Diffusion MRI (dMRI) has been widely adopted to analyse white matter microstructure, but scarcely used to distinguish grey matter regions because of the reduced anisotropy there. Nevertheless, differences in the texture of the cortical 'fabric' have long been mapped by histologists to distinguish cortical areas. Reliable area-specific contrast in the dMRI signal has previously been demonstrated in selected occipital and sensorimotor areas. We expand upon these findings by testing several diffusion-based feature sets in a series of classification tasks. Using Human Connectome Project (HCP) 3T datasets and a supervised learning approach, we demonstrate that diffusion MRI is sensitive to architectonic differences between a large number of different cortical areas defined in the HCP parcellation. By employing a surface-based cortical imaging pipeline, which defines diffusion features relative to local cortical surface orientation, we show that we can differentiate areas from their neighbours with higher accuracy than when using only fractional anisotropy or mean diffusivity. The results suggest that grey matter diffusion may provide a new, independent source of information for dividing up the cortex

    Combining HARDI datasets with more than one b-value improves diffusion MRI-based cortical parcellation

    Get PDF

    Foregut caustic injuries: results of the world society of emergency surgery consensus conference

    Full text link
    corecore